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Abstract

This paper presents a dynamic model for the vibration of a rotating Timoshenko beam subjected to a three-directional

load moving in the axial direction. The model takes into account the axial movement of the axial force component. The

bending moment produced by this component acting on the surface of the beam is included in the model. The two other

transverse force components are either of constant magnitude or a linear function of the local deflection. Lagrange’s

equations of motion for the modal coordinates are derived based on the assumed mode method. These equations are then

solved by a fourth-order Runge–Kutta algorithm. Numerical examples are analysed. The effects of the axial force

component and its induced bending moment, and the deflection-dependence of the moving forces on the dynamic

behaviour of the system at various travelling speeds are investigated. It is found that the bending moment induced by the

axial force component has a significant influence on the dynamic response of the rotating beam and hence must be

considered in such problems as turning operations.

r 2007 Elsevier Ltd. All rights reserved.

1. Introduction

Rotating beams are widely used in engineering. The dynamics of a rotating beam modelled as a Timoshenko
beam, subjected to moving loads acting on the surface of the beam, is investigated. This dynamic model
captures some basic features of a turning operation in machining, in which a cutting tool is moved in the axial
direction against a work piece that is rotating quickly. In a real turning operation, the cutting force is a
function of the deflection and its derivative(s), and is even dependent on the deflection history. The load in the
current model is taken to be first of constant magnitude and then a linear function of the local deflection of the
beam. A more sophisticated and realistic model of the moving load (the cutting force) will be studied in future.

The basic features of a dynamic model of turning should include a rotating member (usually a beam or a
shell) excited by a force that moves in the axial direction. Lee et al. [1] and Katz et al. [2] are the first
researchers to establish such a model. They studied the vibration of a rotating shaft as a beam based on Euler,
Rayleigh and Timoshenko beam theories under a constant transverse load moving at constant velocity.
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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Dynamic response of a rotating shaft based on various beam theories and with various boundary conditions,
subjected to various moving loads that travel at constant speed or non-constant speed, that are of constant
magnitude or time-dependent or displacement-dependent or even random, were examined by a number of
researchers [2–11].

Huang and Hsu [3] examined the resonance of a rotating cylindrical shell subjected to a moving transverse
harmonic load. A rotating, simply supported Timoshenko beam excited by a distributed surface force
travelling with acceleration was studied by Argento and Scott [4]. Han and Zu [5] developed a modal analysis
approach for solving the problem of Katz et al. [2]. Zu and Han [6] investigated the vibration of a rotating
Timoshenko beam with general boundary conditions and subjected to a moving transverse load, with the same
approach of Han and Zu [5]. Lee [7] included the axial force (constant and non-moving) and found it had a
significant effect on the magnitude of the dynamic response. A deflection-dependent force, used by Katz et al.
[12], was introduced by Argento and Morano [8] for the moving load. Huang and Lee [9] dealt with a load
moving repetitively forward and backward in the axial direction. Zibdeh and Juma [10] treated the moving
load as a random force. Boundary conditions of nonlinear stiffness due to clearance in rolling bearings were
considered by El-Saeidy [11]. He included bending moments in his moving load and introduced the finite
element method to the study of rotating members subjected to moving loads. Chen and Ku [13] investigated
the dynamic stability of a rotating shaft-disc system under an (non-moving) axial load. Sheu and Yang [14]
studied the dynamic response of a spinning Rayleigh beam with mass eccentricity (but without moving load).
Ouyang and Wang [15] included a moving bending moment in the dynamic model of a spinning Rayleigh
beam.

In this paper, a dynamic model is presented for the vibration of a rotating shaft as a Timoshenko beam
subjected to a load of three perpendicular components that acts on the surface of the shaft and moves in the
axial direction at high speed. Because the shaft is modelled as a beam, the axial force component acting on the
surface of the beam must be translated to the longitudinal axis of the beam and as a result a bending moment
is generated. It will be seen later in the paper that this moment has a significant influence on both the
magnitude and the frequencies of the vibration of the rotating beam, in particular at lower speeds. The effect
of this moving axial force component is also included appropriately. The dynamic responses of this model are
analysed with numerical examples.
2. Dynamic model

A circular beam rotating about its longitudinal axis, x, and subjected to a three-directional force moving
along the x-axis is shown in Fig. 1. A rectangular coordinate system is fixed with the inertial frame.

The deflections of the rotating beam in the y and the z directions are denoted by v and w, and the angular
rotations around y and z axes by f and y. Therefore, the shear strains on the cross section of the beam are

�xy ¼
qv

qx
� y; �xz ¼

qw

qx
þ f. (1)
x
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z
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Fig. 1. A rotating shaft subjected to a moving load with three perpendicular forces.
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The three-directional moving load acts on the surface of the beam and has to be translated to the neutral
axis of the beam, as shown in Fig. 2.

When the axial force component Px is translated to the longitudinal axis of the beam, a bending moment Mz

is generated as [15]

Mz ¼ �Pxr, (2)

where r is the radius of the beam. As a normal practice in the studies of rotating beams subjected to moving
loads [1–10], the axial and torsional vibrations of the beam are neglected in this paper and so will be absent in
the subsequent equations.

Adapted from Ref. [13], the strain energy of a Timoshenko beam subjected to moving axial force Px is

V ¼
1

2

Z l

0

EI
qf
qx

� �2

þ
qy
qx

� �2
" #

dxþ
1

2

Z l

0

kGAð�2xz þ �
2
yzÞdx�

1

2

Z l

s

Px

qv

@x

� �2

þ
@w

@x

� �2
" #

dx, (3)

where E is the Young’s modulus and G the shear modulus, I ¼ pr4=4 the moment of area, A ¼ pr2 the cross-
sectional area of the beam and k the shear coefficient.

The kinetic energy of the rotating Timoshenko beam is [13]

T ¼
r
2

Z l

0

A
qv

qt

� �2

þ
qw

qt

� �2
" #

þ I ½ _f
2
þ _y

2
� 2Oðf_y� y _fÞ þ 2O2�

( )
dx, (4)

where O and r are the rotational speed and mass density of the beam.
The virtual work due to non-conservative forces:

dW ¼ Py dvðs; tÞ þ Pz dwðs; tÞ þMz dyðs; tÞ. (5)

The Lagrangian of the model is

L ¼ T � V . (6)
3. Mathematical formulation and computation

It is assumed that the deflections and rotations of the beam are:

vðx; tÞ ¼
Pn
i¼1

jiðxÞaiðtÞ ¼ uTa; wðx; tÞ ¼
Pn
i¼1

jiðxÞbiðtÞ ¼ uTb;

fðx; tÞ ¼
Pn
i¼1

ciðxÞciðtÞ ¼ wTc; yðx; tÞ ¼
Pn
i¼1

ciðxÞdiðtÞ ¼ wTd;
(7)
Py

Pz

MzT

Fig. 2. Torque and bending moment generated from the three force components translated to shaft centre line.
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where

uT ¼ fj1;j2; . . . ;jng; wT
¼ fc1;c2; . . . ;cng;

aT ¼ fa1; a2; . . . ; ang; bT ¼ fb1; b2; . . . ; bng;

cT ¼ fc1; c2; . . . ; cng; dT ¼ fd1; d2; . . . ; dng;

and jiðxÞ and ciðxÞ are spatial functions that satisfies, respectively, the displacement boundary conditions and
rotation boundary conditions of the beam, ai(t), bi(t), ci(t) and di(t) are functions of time t to be determined.

Substitution of Eq. (7) into Eqs. (3–6) yields

L ¼ T � V ¼
rA

2
ð_aTA_aþ _b

T
A_bÞ þ

rI

2
ð_cTB_cþ _d

T
B_dÞ � rIOð_d

T
Bc� _cTBdÞ þ rIO2l

�
EI

2
ðcTDcþ dTDdÞ �

kGA

2
ðaTCa� 2aTEdþ dTBdþ bTCbþ 2bTEcþ cTBcÞ

þ
Px

2
½aTCpðtÞaþ bTCpðtÞb� ð8Þ

and if the force components are functions of only t, then

dW ¼ �ddTwðsÞrPx þ daTuðsÞPy þ dbTuðsÞPz, (9)

or if Py and Pz are a linear function of local deflection [12] in the form of

Py ¼ P̄y � kvvðsÞ; Pz ¼ P̄z � kwwðsÞ, (10)

then

dW ¼ �ddTwðsÞrPx þ daTuðsÞ½P̄y � kvu
TðsÞa� þ dbTuðsÞ½P̄z � kwuTðsÞb�, (11)

where

A ¼
R l

0 uðxÞuTðxÞdx; B ¼
R l

0 wðxÞwT
ðxÞdx; C ¼

R l

0 u0ðxÞu0TðxÞdx;

CPðtÞ ¼
R l

sðtÞ
u0ðxÞu0TðxÞdx; D ¼

R l

0 w0ðxÞw0TðxÞdx; E ¼
R l

0 u0ðxÞwT
ðxÞdx

(12)

and P̄y and P̄z are either of constant magnitude or functions of t, kv and kw are constant coefficients.
In Eqs. (8) and (12), the dot and dash represent derivatives with respect to t and x, respectively.

Lagrange’s equations of motion give

rAA€aþ ½kGAC� PxCPðsÞ�a� kGAEd ¼ PyuðsÞ,

rAA€bþ ½kGAC� PxCPðsÞ�bþ kGAEc ¼ PzuðsÞ,

rIB€cþ 2rIOB_dþ ðEIDþ kGABÞcþ kGAETb ¼ 0,

rIB€d� 2rIOB_cþ ðEIDþ kGABÞd� kGAETa ¼ �rPxwðsÞ, ð13Þ

when the three force components are of constant magnitude or functions of only t, or

rAA€aþ ½kGAC� PxCPðsÞ þ kvuðsÞu
TðsÞ�a� kGAEd ¼ P̄yuðsÞ,

rAA€bþ ½kGAC� PxCPðsÞ þ kwuðsÞuTðsÞ�bþ kGAEc ¼ P̄zuðsÞ,

rIB€cþ 2rIOB_dþ ðEIDþ kGABÞcþ kGAETb ¼ 0,

rIB€d� 2rIOB_cþ ðEIDþ kGABÞd� kGAETa ¼ �rPxwðsÞ, ð14Þ

when the forces are defined by Eq. (10).
As can be seen from Eqs. (13) and (14), the moving axial force component has introduced a time-dependent

stiffness term which in general reduces (when compressive) or increases (when tensile) the overall stiffness of
the beam. The bending moment generated by this force component has added an extra term on the right-hand
side of the fourth equation for the rotation of the beam’s cross section about the z-axis, which is non-trivial.
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The deflection-dependence of the forces adds extra terms in the stiffness matrix. Eqs. (13) and (14) will be
solved using a fourth-order Runge–Kutta method.
4. Numerical results for constant forces

Numerical examples are presented for the dynamic responses of the shaft in terms of some parameters. The
material and geometric properties of the simply supported circular shaft of Ref. [2] are taken so that results
can be compared. l ¼ 1m, E ¼ 2:07� 1011 Pa, G ¼ 7:76� 1010 Pa, k ¼ 0.9, r ¼ 7700 kgm�3. The funda-
mental frequency of the shaft when it is stationary is o1 ¼ ðp=lÞ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EI=rA

p
. The critical speed of the axial travel

is ucr ¼ ðl=pÞo1 ¼ ðp=lÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EI=rA

p
. Non-dimensional parameters of a ¼ u=ucr (where u is the axial speed of the

moving load), b ¼ pr=2l and Ō ¼ O=o1 are often used in simulated examples [1,2]. Ō ¼ 2:5. Ten beam modes
(n ¼ 10) are found to give good results and hence are used.

First of all, the case of Px ¼ 0, Py ¼ �300N, Pz ¼ 0 is considered. The mid-span static deflection of the
stationary shaft subjected to Py at x ¼ l/2 is vs ¼ Pyl3=48EI . The numerical results of the dynamic responses in
terms of the deflection ratios of vp/vs and wp/vs of two shafts of r ¼ 0.095m (b ¼ 0.15) and r ¼ 0.019m
(b ¼ 0.03) are shown in Fig. 3, where vp and wp are instantaneous deflections of v and w at the location of the
moving load.

These results look identical to those of the same problem reported in Ref. [7]. This indicates that the
formulas in Eq. (13) and the derived Runge–Kutta algorithm are correct for this specific case.

Next, the dynamic responses of these shafts subjected to Px ¼ 0, Py ¼ �300N and Pz ¼ �1100N travelling
at different axial speeds are computed as a benchmark, shown in Fig. 4, for the subsequent comparisons with
more complicated cases.

As Pz is several times higher than Py, the dynamic response of wp is also several times higher than vp. The
dynamic responses of wp and vp at different speeds u for shaft of b ¼ 0.15 are similar in pattern, except for wp

and vp at a ¼ 0.11. vp at b ¼ 0.15 and a ¼ 0.11 looks slightly out of place from other dynamic responses at
a ¼ 0.11. Actually, its pattern is similar to those other dynamic responses in the sense that its first peak gets
stretched upward slightly in comparison with other dynamic responses. Except for this one slightly peculiar
case, the dynamic responses of the two shafts are also similar in pattern.
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Fig. 3. Dynamic responses of the shaft subjected to Py ¼ �300N moving at different speeds: (a) vp/vs at b ¼ 0.15; (b) wp/vs at b ¼ 0.15;

(c) vp/vs at b ¼ 0.03; and (d) wp/vs at b ¼ 0.03. a ¼ 0.11, a ¼ 0.5, a ¼ 1.1, a ¼ 1.5.
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Fig. 4. Dynamic responses of the shafts subjected to two force components moving at different speeds (benchmark results): (a) vp/vs at

b ¼ 0.15; (b) wp/vs at b ¼ 0.15; (c) vp/vs at b ¼ 0.03; and (d) wp/vs at b ¼ 0.03. The line codes are the same as in Fig. 3.
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Fig. 5. Dynamic responses of the shafts subjected to three force components moving at different speeds (Px ¼ 0:2Pcr): (a) vp/vs at b ¼ 0.15;

(b) wp/vs at b ¼ 0.15; (c) vp/vs at b ¼ 0.03; and (d) wp/vs at b ¼ 0.03. The line codes are the same as in Fig. 3.
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The patterns of the dynamic responses of the shaft with the axial force and without are nearly the same
(when Mz is ignored). A small increase in the height of the first peaks at a ¼ 0.11 is now obvious. The dynamic
responses subjected to Px increases for a compressive axial force (Px40) and decreases for a tensile axial force
(Pxo0). Numerical results for Px ¼ 0:2Pcr (where Pcr ¼ p2EI=l2 is the axial Euler buckling load of the shaft),
Py ¼ �300N and Pz ¼ �1100N are illustrated in Fig. 5.
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Fig. 6. Dynamic responses of the shafts subjected to three force components and the induced bending moment moving at different speeds

(Px ¼ 0:2Pcr): (a) vp/vs at b ¼ 0.15; (b) wp/vs at b ¼ 0.15; (c) vp/vs at b ¼ 0.03; and (d) wp/vs at b ¼ 0.03. The line codes are the same as in

Fig. 3.
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Note that the Px-induced moment Mz has not been considered in the above calculations. It has been ignored
by other researchers. The results that exclude Mz are presented here so that they can be compared with the
results of similar cases when Mz is included, in the following example.

Finally, Mz is now considered and all other data remains the same. Numerical results are presented in Fig. 6.
When the induced moment is considered, the dynamic responses experience rather drastic changes. The

vibration magnitude increases by a large amount at low travelling speeds (vp and wp are now non-
dimensionalised against a new mid-span static deflection of vs ¼ Pyl3=48EI þMzl

2=16EI , which is much
larger than Pyl3=48EI). Moreover, the dynamic responses are more eventful in the sense that there are more
cycles of oscillations or smaller-amplitude faster vibrations at a ¼ 0.11 and they are no longer smooth. The
dynamic responses now become negative when the forces travel to certain locations. At first glance, it may
seem odd that Figs. 6a–c are similar in pattern but Fig. 6d is out of place. This should be clear from Fig. 7,
where only Px and Mz are present, so that the influence of the induced moment may be revealed. Notice that
here vs ¼Mzl

2=16EI .
As seen from Fig. 7, the dynamic responses of wp produced by Mz for the shaft of b ¼ 0.03 are relatively

small. Therefore, the dynamic responses due to Py and Pz play a big part in the results of Fig. 6d and hence
Fig. 6d looks close to Fig. 5d in which Mz is neglected. In other words, the influence of Mz on wp for the shaft
of b ¼ 0.03 is much less than in other cases with greater radii.

5. Numerical results for deflection-dependent forces

All the parameters used for the results of Fig. 5 are adopted here, except that the forces are now defined by
Eq. (10). Following Katz et al. [12], a new parameter is introduced as g ¼ kv=rAlo2

1 and kw is taken to be the
same as kv for the sake of simplicity. P̄y ¼ �300N and P̄z ¼ �1100N. Numerical results obtained at three
different values of g are shown in Fig. 8.

Fig. 8 indicates that the greater g is, the smaller deflection the shaft produces. This is expected according to
Eq. (10).
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Fig. 8. The influence on g on the dynamic responses: (a) a ¼ 0.11, b ¼ 0.15; (b) a ¼ 0.5, b ¼ 0.15; (c) a ¼ 0.11, b ¼ 0.03; and (d) a ¼ 0.5,

b ¼ 0.03. g ¼ 0, g ¼ 0.1, g ¼ 0.3.
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b ¼ 0.03. The line codes are the same as in Fig. 3.
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It is also clear from Fig. 8 that the magnitude of the dynamic responses varies with g but their vibration
patterns remain the same, which is consistent with the finding on a similar example [12] without the axial
force-induced moment.
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6. Conclusions

A dynamic model for a rotating Timoshenko beam subjected to a moving surface load of three force
components (two transverse and one axial) is established. The bending moment induced by the axial force
component acting on the surface of the shaft is included in the moving-load model. The two transverse force
components of the moving load are modelled as of constant magnitude or a linear function of the local
deflection of the beam. Numerical results show that with moving axial force, the deflection of the shaft
increase when under compression and decreases when under tension, compared with the case of no axial force.
When the axial-force-induced moving moment is included, the deflection of the beam increases by a great deal
(under compression) and higher-frequency components also become much greater, in particular at relatively
low speeds. The deflection-dependence of the forces changes the magnitude of the dynamic responses, but their
vibration patterns are very similar.
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